

The Digital Manufacturing Laboratory (DML)

- A Shared Instrumentation Laboratory (SIL)

"<u>A 3D Printing Primer</u>" (rev. 02-2019)

- ✓ Applications
- ✓ 3D Printing process Pipeline
- DML Printer Technologies \checkmark
- ✓ Common Pitfalls
- ✓ The DML Work Order submission portal
- **DML** Contact Information \checkmark

Overview

Manufacturing

Replacement parts - cheaper to build than to buy

Aerospace

Develop new/lightweight materials

Biomedical

Soft tissue reconstruction

Functional prosthetic limbs

Dental

Dental fillings, implants, appliances

3D Printed Food

Extruder output: chocolate, dough, sauce!

3D printed HOUSES

Extruder output: concrete

3D printing for Mars astronauts

Allow mission participants to colonize

Metal Printing

Laser sintering to produce strong/dense/complex parts

Modern-day Applications in 3D Printing

Digitally Construct a 3-D CAD Model

- 1. The DML is modeling software "agnostic"
- 2. Use Creo, Solidworks, or ANY modeling package!
- 3. For simple parts, 3-D scanning *may* be an option

CAD (e.g., SolidWorks, Creo, AutoDesk)

"How do I print a 3-D component?"

3-D scanning (steps, scan-to-print)

"What are the UNITS of my CAD Model (bounding box)?"

As the modeler of your part, YOU must understand the size of your "bounding box"

- Units should be in either <u>inches or millimeters</u> for part export
- These key dimensions will be requested on your Work Order

size of your "bounding box" rt export k Order

> X=32.6600 mm Y=32.7000 mm Z=35.9000 mm

> > Length, width, height

"What file format do I <u>export</u> my models to for 3-D Printing?"

Once you have FINALIZED your 3-D CAD Model:

Export finalized model(s) to .stl file format (<u>Most</u> <u>Common</u> export format for 3-D printing)

* <u>Note</u>: each part needs to be exported as a separate .stl file

* <u>Note</u>: 3-D printing may require other file formats, e.g., .OBJ files, for 3-D prints with colors/materials. Unless otherwise instructed, **please export your files into .stl format**

STL file format: <u>https://en.wikipedia.org/wiki/STL (file_format)</u>

∇	File Add Timeline Game Ra	ender Help 💼	SR:2-Model	X) 🖯	SCE:Scene
	New	Ctrl X	\sim		
39-4 	Open	F1	>>~~	~	
	Open Recent		~~~	><	\prec
	Recover Last Session				
~	Save	Ctrl W			×
	Save As	F2	\gg	~>>	< 7
-	Compress File				
2	Save Rendered Image	F3	~~_/		
and the second	Screenshot Subwindow	Ctrl F3			
	Screenshot All	Ctrl Shift F3			
	Save Game As Runtime				
	Save Default Settings	- Ctrl U			
	Load Factory Settings				
><	Append or Link	Shift F1			
	Append or Link (Image Browser)	Ctrl F1			
	Import		/		~~
	Export	•	VRML 1.0		Ctrl F2
<	External Data		DXF		Shift F2
	Quit Blender	Ctrl Q	STL	_	
تر ا			抱 3D Studio (.3ds)		
			🕺 AC3D (.ac)		

"Is my CAD model ready to be 3-D printed?"

As modeler, it is your responsibility to ensure that your CAD model, and your exported .stl parts, are free of any defects

CAD model repair tools:

- netFabb (free trial): <u>https://www.autodesk.com/products/netfabb</u>
- Meshmixer:

http://www.meshmixer.com/download.html

Compress (VERIFIED) .stl file(s) into a single .zip archive

"How large can my model be for a 3-D Print?"

A: It depends on the size of the Build Plate, per printer

- And each printer (typically) has a designated material type
- For printers in the DML, build volumes range from: (5"x5"x5") to (12"x5"x6")

MakerBot Replicator (5th Generation) printers

• Uses PLA plastic for filament

MakerBot Replicator 2X printer

- Has **2 extruders** for multi-colored prints
- Uses ABS plastic filament

Hyrel 3-D Engine E3 Printer

- Can print in PLA, nylon, flexible materials
- More for *experimental applications*

1. PLA plastic

FormLabs 1+ Printers

- Use a liquid resin (SLA) as the product build material
- Options for different colors, material types and constituencies

<u>mojo</u>

- Uses ABS-plus plastic (Ivory)
- Fused Deposition Modeling (FDM) Technology
- Efficient post-processing bath (no trimming/cutting required)

<u>uPrint SE printer</u>

- Higher quality builds than standard ABS/PLA
- Uses a water soluble support material
- Efficient post-processing bath (no trimming/cutting required)

3. ABS+ Plastic

MarkForged MarkTwo printer

- A composite material printer (stronger, durable parts)
- Uses nylon base, with carbon/kevlar/fiberglass embedded
- "Onyx" material embeds carbon fibers within the nylon matrix material

4. Nylon/composites

obJet 30 printer

- "PolyJet" 3D printer is analogous to inkjet 2-D printing
- Can produce complex parts using a wide range of (pre-loaded) materials
- Power-wash station enables support material to be easily removed

5. Polyjet materials

ColorProJet 260 Plus printer

- Core material is a gypsum powder (fragile/brittle) ${\bullet}$
- Liquid binder causes core to solidify \bullet
- Creates photo-realistic parts in full CMY color
- lacksquare

6. Color binder jet materials

"What is 3D Scanning?"

- Ultra High Definition 3D Scanner
- Infrared technology used to scan 3D parts
- Useful to Reverse Engineer products
- Useful to recover broken parts
- Best for matte (not shiny) parts, with minimal concavities (internal holes/voids)

NextEngine 3D Scanner

What are "overhangs"?

4

University at Buffalo

Laboratories

Shared Instrumentation

- **3-D Prints take place in a vertical manner**, and each layer needs to be supported from below
 - If so, you will require a *support structure* during the 3-D build
 - Temporary material must be removed during post-processing

Model Infill Percentage

- How "solid" does your model need to be?
 - Assigned during (printer) software setup
 - Should be dictated by the CAD modeler
 - -10% is default

Wall Thickness Limitations

- Make sure the printed wall has integrity
 - <u>Can't print</u> a thin "foil" (i.e., NO thickness)
 - Most printers can handle 1 mm
 - To be safe, go as large as is feasible

"What are structural considerations in 3-D Printing?"

"What are SUPPORTS in 3-D Printing?"

In order to print your part, a temporary "support structure" will be required

- Supports are generated by the 3-D printer software NOT by the CAD modeler
- Supports will be removed after the print is complete
- Supports will add to your overall print volume (e.g., in³ of total material consumed) and costs

"What is post-processing in 3-D Printing?"

Remove support structure from completed part

- Manual removal may be required to finish part
 - Responsibility of the customer (not the DML staff)*
- Washing/rinsing may be required to finish part \bullet
 - Responsibility of the DML staff (**not the customer**)[#] \checkmark

"How much will it cost to print my part?"

- The DML is an established UB Service Center
 - -Rate structure established to recover costs
 - -Rates are based per printer, per material
 - -Rates are based on total print volume (in³), model & supports
- We have 3 tiers of rates, and payment:
 - 1. Student Educational projects (pay by epay)
 - 2. UB Sponsored Research/Internal (pay by Monthly IDI)
 - 3. Industry/External (pay by credit card or Monthly Invoice)

<u>Current DML Printing Rates</u>: <u>https://www.buffalo.edu/content/dam/www/shared-facilities-equip/Digital%20Manufacturing%20Laboratory%20-%20Rates_11-08-17.pdf</u>

84

http://www.buffalo.edu/shared-facilities-equip/facilities-equipment/digital-manufacturing-lab.html

"Where do I submit my Work Order?"

"What happens after I submit my Work Order?"

- You will be contacted (e-mail) by a qualified DML staff member 1. 2. We will schedule a consultation to discuss project requirements
- 3. You will be provided a cost estimate for your prototype
- You will pay for your part using an approved payment mechanism 4.
- 5. We will contact you with any questions/concerns
- 6. When the part is complete, we will contact you to arrange for pickup

Note: Normal turnaround time can be expected to be **3-5 business days**

- During peak periods, this may increase to 5-7 business days lacksquare
- **Our print submission queue is FIRST COME, FIRST SERVED. NO EXCEPTIONS**

"Where are you Located?"

Digital Manufacturing Laboratory (DML) School of Engineering and Applied Sciences 118 Bonner Hall University at Buffalo Buffalo, NY 14260

